The Go/No-Go Decision: High-Speed RTOs Are Fraught With Risk
Dann Runik still gets chills when he remembers the rainy morning of March 1, 1978. He was in the cockpit of a DC-8 at Los Angeles International Airport as he watched Continental Flight 603, a heavily laden DC-10, lumber down Runway 6R on its takeoff roll. The heavy trijet was bound for Honolulu with 198 passengers and crew aboard.
Everything appeared normal to the DC-10’s flight crew as the aircraft accelerated toward its 156 KIAS V1 go/no-go decision speed. But when passing through 152 KIAS, the crew heard a loud “metallic bang” and the jetliner started to “quiver.” The captain felt it was unsafe to continue the takeoff, so 4 kt. below V1 he initiated a rejected takeoff (RTO).
Unknown to the crew, a recapped tire on the left main mount had thrown a tread and had blown out. This caused an adjacent tire to become overloaded, causing it to blow as well. Shrapnel from either or both of the two ruptured tires pierced a third tire on the left main mount and it, too, failed. The aircraft both yawed and sagged to the left as a result. The crew felt as though they were losing control of the airplane.
The captain stood on the brake pedals, pulled the throttles to idle and yanked up on the thrust reverser levers. At 159 KIAS — 3 kt. above V1, the 429,000-lb. jumbo began to decelerate but at a considerably slower rate than the crew had experienced during high-speed RTO simulator training. The device had not been programmed to simulate braking performance compromised by blown tires.
On that day, though, the wet runway surface combined with the failed tires to severely reduce stopping performance, particularly due to the upwind end of the runway being heavily coated with rubber skid marks from aircraft landing to the west and the lack of pavement grooving. In fact, the conditions at the end of the runway impeded braking action by as much as one-third, a condition the crew likened to sliding on ice.
With 2,000 ft. to go on the 10,885-ft. runway, the captain realized he couldn’t stop by the end of the runway. So, he steered the aircraft right of centerline in an effort to avoid hitting the approach light stanchions. As the aircraft rolled off the pavement at nearly 70 kt., the left main mount broke through the tarmac of the overrun and partially sheared off its mount, trailing behind the wing. The left fuel tank ruptured and nearly 6,000 gal. of jet fuel burst into fire, engulfing the left side of the aircraft. The left wing dug into the ground, the aircraft spun almost 90 deg., and it came to a stop some 664 ft. off the runway, or nearly 1 mi. from the point at which the captain initiated the RTO.
The cabin crew immediately began evacuating the aircraft. But the intense heat from the fire on the left side soon made most of the slides on the right side fail. And one of the right over-wing exit slides failed to deploy at all. Less than two-thirds of the aircraft occupants were able to use the escape slides before all of them failed. The rest had to jump off the aircraft.
Three crewmembers and 11 passengers suffered serious injuries during the egress. Local firefighters also were injured in the inferno. Two passengers later died of their burns and smoke inhalation.
Similarly, on Sept. 19, 2008, a Learjet 60’s RTO in Columbia, South Carolina, resulted in the deaths of both pilots and two passengers, and caused severe burns to the two surviving passengers. This accident also involved the captain attempting a high-speed abort after the aircraft suffered tire failure. Contributing to the accident were malfunctioning thrust reversers that allowed the aircraft to accelerate well above the V1 decision speed as the captain attempted to stop the aircraft.
A close review of the facts suggests an RTO was the wrong decision in both accidents.
High-Speed Abort Risks
The relative rarity of RTOs is one reason that most pilots are unprepared to make the most informed go/no-go decisions when trouble suddenly imperils an aircraft during takeoff. Runik, now FlightSafety International’s executive director, advanced training programs, notes that for every 3,000 commercial jet departures, only one results in an RTO. But a Boeing study notes that many RTOs go unreported, so the actual number may be closer to one in 2,000 takeoffs, or greater.
Unreported events may include slow-speed aborts early in the takeoff roll, occasioned by warning lights, out of trim conditions or the aircraft not having the appropriate high lift configuration. Considering the relative infrequency of RTOs, business aircraft pilots might only experience such an event once every 10 to 20 years. With such low probability, there’s a high risk of startle factor should such an event occur. There is ample reason to be prepared for such events, however, considering the potential risks associated with RTOs.
Of the reported RTOs, fewer than one in 1,000 resulted in an overrun accident or incident in large part because the decision to stop the aircraft was made well below the V1 decision speed. Notably, more than three-quarters of all RTOs are initiated at 80 KIAS or less. Such relatively slow-speed RTOs seldom cause problems. RTO accidents and incidents mainly come from the 2% of RTOs initiated above 120 KIAS. Notably, 55% of high-speed aborts were initiated above V1. Of those, 79% resulted in fatalities or incidents.
You’re only likely to suffer an accident or incident from an RTO about once in every 4.5 million departures, according to FAA statistics. But the risks associated with high-speed RTOs were plenty sufficient to cause Runik and FlightSafety to team with Randy Gaston, Gulfstream Aerospace’s recently retired vice president, flight operations, to attack the problem.
Historically, pilots have rejected takeoffs less than 18% of the time due to engine failure, according to the Netherlands Aerospace Center’s (NLR) Air Transport Safety Institute. The other four-fifths were due to blown tires, warning lights or other indications. However, less than half of those RTOs were warranted. And when pilots made the decision to continue the takeoff despite such abnormal indications, none of those “go” decisions resulted in accidents or incidents, according to FlightSafety’s research.
“There’s an overall lack in evidence-based training based on examining FOQA [flight operational quality assurance] data, NTSB accident reports and ASRS [NASA’s Aviation Safety Reporting System] incidents. It was Randy’s idea of teaching pilots how to make go/no-go decisions,” says Runik.
At first Runik balked. Gaston responds, “Oh sure. It’s too difficult. It’s too political. But since you’re carping about it, you’re the one to do it.
Ingen kommentarer:
Legg inn en kommentar
Merk: Bare medlemmer av denne bloggen kan legge inn en kommentar.