Researchers Tackle High-Altitude Engine Icing
AIN AIR TRANSPORT PERSPECTIVE » MARCH 31, 2014
March 25, 2014, 5:18 PM
Over the last 20 years, the aviation industry has documented more than 200 incidents in which turbofans have lost power during high-altitude flights, according to NASA. Investigators have developed a theory that high concentrations of small ice crystals caused the loss of power, and researchers believe the phenomenon has become more common as engine companies introduce higher-bypass turbofans and airlines fly at higher altitudes. EASA certification director Norbert Lohl recently cited climate change as another possible explanation.
An international research effort led by Airbus is under way in Darwin, Australia, to better understand engine icing conditions, using a specially instrumented Falcon 20 business jet. This month, the “high-altitude ice crystals/high ice water content” flight campaign has taken the airplane into weather that produces specific icing conditions so researchers can study its characteristics. As part of the tests, a NASA-supplied probe measures the total water content of clouds containing high concentrations of ice crystals, in the vicinity of oceanic and continental thunderstorms.
An international research effort led by Airbus is under way in Darwin, Australia, to better understand engine icing conditions, using a specially instrumented Falcon 20 business jet. This month, the “high-altitude ice crystals/high ice water content” flight campaign has taken the airplane into weather that produces specific icing conditions so researchers can study its characteristics. As part of the tests, a NASA-supplied probe measures the total water content of clouds containing high concentrations of ice crystals, in the vicinity of oceanic and continental thunderstorms.
Ingen kommentarer:
Legg inn en kommentar
Merk: Bare medlemmer av denne bloggen kan legge inn en kommentar.